Enriching algebras over coalgebras
and operads over cooperads

M. Anel

ETH Zürich
matthieu.anel@math.ethz.ch

Montpellier - mai 2014
This is a work in progress with A. Joyal.

We are trying to understand Koszul duality from a conceptual point of view.

We still don’t understand Koszul duality, but we discovered some category theory underlying the bar and cobar constructions.
Main theorem

Let \((\mathbf{V}, \otimes, 1, [-,-])\) be a symmetric monoidal closed locally presentable category and let \(P\) be a cocommutative Hopf colored operad in \(\mathbf{V}\).

Theorem (A-J)

1. The category \(P\)-Coalg is symmetric monoidal closed.
2. The category \(P\)-Alg is enriched, tensored, cotensored and symmetric monoidal over \(P\)-Coalg.

Corollary

Let \(P = \text{As the associative operad}\).

1. The category Coalg of coassociative coalgebras is symmetric monoidal closed.
2. The category Alg of associative algebras is enriched, tensored, cotensored and symmetric monoidal over Coalg.
Main theorem

Let \((\mathcal{V}, \otimes, 1, [-, -])\) be a symmetric monoidal closed locally presentable category and let \(P\) be a cocommutative Hopf colored operad in \(\mathcal{V}\).

Theorem (A-J)

1. The category \(P\text{-Coalg}\) is symmetric monoidal closed.
2. The category \(P\text{-Alg}\) is enriched, tensored, cotensored and symmetric monoidal over \(P\text{-Coalg}\).
Main theorem

Let $\left(V, \otimes, 1, [-,-] \right)$ be a symmetric monoidal closed locally presentable category and let P be a cocommutative Hopf colored operad in V.

Theorem (A-J)

1. The category $P\text{-Coalg}$ is symmetric monoidal closed.
2. The category $P\text{-Alg}$ is enriched, tensored, cotensored and symmetric monoidal over $P\text{-Coalg}$.

Corollary

Let $P = \text{As}$ the associative operad.

1. The category Coalg of coassociative coalgebras is symmetric monoidal closed.
2. The category Alg of associative algebras is enriched, tensored, cotensored and symmetric monoidal over Coalg.
Main theorem

Corollary

Let $P = K$ a category (in \textbf{Set}).

1. The category of functors $[K^{\text{op}}, V]$ is symmetric monoidal closed.

2. The category of functors $[K, V]$ is enriched, tensored, cotensored and symmetric monoidal over $[K^{\text{op}}, V]$.
Main theorem

Corollary
Let $P = K$ a category (in \mathbf{Set}).

1. The category of functors $[K^{\text{op}}, V]$ is symmetric monoidal closed.
2. The category of functors $[K, V]$ is enriched, tensored, cotensored and symmetric monoidal over $[K^{\text{op}}, V]$.

Corollary
Let $P = \mathcal{OP}$ be the operad of K-colored operads.

1. The category $\mathbf{coOp}(K)$ of K-colored cooperads is symmetric monoidal closed.
2. The category $\mathbf{Op}(K)$ of K-colored operads is enriched, tensored, cotensored and symmetric monoidal over $\mathbf{coOp}(K)$.
Part I - Hopf operads
Colored operad

Let K be a set (could be a category). We put $S(K)$ for the free symmetric monoidal category on K.

Let (\mathbf{V}, \otimes) be a symmetric monoidal category.

A \emph{K-colored operad} P in \mathbf{V} is the data of a functor

$$P : S(K)^{op} \times K \to \mathbf{V}$$

which is a monoid for the substitution monoidal structure

$$P \circ P \to P \quad \text{and} \quad I \to P.$$
Colored operad

Concretely, this amounts to the data of

- objects
 \[P^k_k = P^{k_1, \ldots, k_n}_k \in \mathbf{V} \]
 (where the \(k, k_i \) are in \(K \))

- actions of symmetric groups related to repetition of elements in \(\overline{k} \)

- and maps

\[P^{k_1, \ldots, k_n}_k \otimes P^{\ell_1}_{k_1} \otimes \cdots \otimes P^{\ell_n}_{k_n} \longrightarrow P^{\ell_1 + \cdots + \ell_n}_{k} \]

\[1 \rightarrow P^k_k \]

satisfying associativity and unitality conditions.
Colored operad - examples

- If $P[n]$ is a unisorted operad (Associative, Commutative, Poisson, Lie, L_∞, A_∞...) we put $K = \{\ast\}$ and

 \[
 P^*_\ast, \ldots, \ast := P[n]
 \]
Colored operad - examples

- If $P[n]$ is a unisorted operad (Associative, Commutative, Poisson, Lie, L_∞, A_∞...) we put $K = \{\ast\}$ and

$$P^* \xrightarrow{n \text{ times}} \cdots \ast := P[n]$$

- If B is an associative algebra, we put $K = \{\ast\}$,

$$P^* := B$$

and all Ps are other 0.
Colored operad - examples

- If $P[n]$ is a unisorted operad (Associative, Commutative, Poisson, Lie, L_∞, A_∞,...) we put $K = \{\ast\}$ and

\[
\underbrace{P_\ast, \ldots, \ast}_{\text{n times}} := P[n]
\]

- If B is an associative algebra, we put $K = \{\ast\}$,

\[
P_\ast := B
\]

and all Ps are other 0.

- If K is a category, we put $K = ob(K)$,

\[
P^k_{k'} := K(k, k')
\]

and all other Ps are 0.
Colored P-algebra

For a covariant functor $A : K \to V$ we shall denote the value at $k \in K$ by A_k.

If $\overline{k} = (k_1, \ldots, k_n)$ we put $A_{\overline{k}} = A_{k_1} \otimes \cdots \otimes A_{k_n}$.

Let P a K-colored operad.
A P-algebra is a functor $A : K \to V$ together with maps

$$P_{\overline{k}}^k \otimes A_{\overline{k}} \to A_k$$

satisfying associativity and unitality conditions.
Colored P-algebras - examples

- If P is a unisorted operad, an algebra A is a \textit{unisorted P-algebra}

\[P[n] \otimes A^\otimes n \longrightarrow A \]
Colored P-algebras - examples

- If P is a unisorted operad, an algebra A is a **unisorted** P-algebra

\[P[n] \otimes A^\otimes n \longrightarrow A \]

- If $P = B$ is an associative algebra, an algebra A is a **left module**

\[B \otimes A \longrightarrow A \]
Colored P-algebras - examples

- If P is a unisorted operad, an algebra A is a unisorted P-algebra

\[P[n] \otimes A^n \longrightarrow A \]

- If $P = B$ is an associative algebra, an algebra A is a left module

\[B \otimes A \longrightarrow A \]

- If $P = K$ is a category, an algebra A is a covariant functor

\[K \rightarrow V. \]
Colored P-coalgebra

For a contravariant functor $C : K^{op} \rightarrow \mathbf{V}$ we shall denote the value at $k \in K$ by C^k

If $\overline{k} = (k_1, \ldots, k_n)$ we put $C^{\overline{k}} = C^{k_1} \otimes \cdots \otimes C^{k_n}$.

Let P a K-colored operad.

A P-coalgebra is a functor $C : K^{op} \rightarrow \mathbf{V}$ together with maps

$$P_{k}^{\overline{k}} \otimes C^k \rightarrow C^{\overline{k}}$$

satisfying coassociativity and counitality conditions.
Colored P-algebras - examples

- If P is a unisorted operad, a coalgebra C is a unisorted P-coalgebra

$$P[n] \otimes C \longrightarrow C^\otimes n$$

- If $P = B$ is an associative algebra, a coalgebra C is a right module.

- If $P = K$ is a category, a coalgebra C is a contravariant functor $K^{\text{op}} \to V$.
Colored P-algebras - examples

- If P is a unisorted operad, a coalgebra C is a unisorted P-coalgebra
 \[P[n] \otimes C \longrightarrow C^\otimes n \]
- If $P = B$ is an associative algebra, a coalgebra C is a right module.
 \[B \otimes C \longrightarrow C \]
Colored P-algebras - examples

- If P is a unisorted operad, a coalgebra C is a unisorted P-coalgebra
 \[P[n] \otimes C \rightarrow C^\otimes n \]

- If $P = B$ is an associative algebra, a coalgebra C is a right module.
 \[B \otimes C \rightarrow C \]

- If $P = K$ is a category, a coalgebra C is a contravariant functor $K^{op} \rightarrow V$.
Hadamard product

If P and Q are two K-colored operad their Hadamard product of $P \otimes Q$ is defined by

$$(P \otimes Q)^k_k := P^k_k \otimes Q^k_k$$

This is again an operad:

$$
\left(P^k_k \otimes Q^k_k \right) \otimes \left(P^\ell_1 \otimes Q^\ell_1 \right) \otimes \cdots \otimes \left(P^\ell_n \otimes Q^\ell_n \right)
$$

$$
= \left(P^k_k \otimes P^\ell_1 \otimes \cdots \otimes P^\ell_n \right) \otimes \left(Q^k_k \otimes Q^\ell_1 \otimes \cdots \otimes Q^\ell_n \right)
$$

$$
\longrightarrow P^\ell_1 \oplus \cdots \oplus \ell_n \otimes Q^\ell_1 \oplus \cdots \oplus \ell_n
$$
Hopf operad

The category \(\mathbf{Op}(K) \) of \(K \)-colored operad is symmetric monoidal for the Hadamard product.

A (cocommutative) Hopf operad is an operad which is a cocommutative comonoid for the Hadamard product.

Equivalently, this says that all \(P^k_k \) are cocommutative comonoids and that the compositions an unit maps are coalgebra maps.
Hopf operad

The category $\mathbf{Op}(K)$ of K-colored operad is symmetric monoidal for the Hadamard product.

A (cocommutative) Hopf operad is an operad which is a cocommutative comonoid for the Hadamard product.

Equivalently, this says that all $P_k^\bar{k}$ are cocommutative comonoids and that the compositions an unit maps are coalgebra maps.

Examples:

- all operads in \mathbf{Set} (Associative, Commutative, any category, the operad of K-colored operads, ...)
- all operads in \mathbf{Top} (E_n, John’s Phyl...)
- the Poisson operad
- any cocommutative bialgebra
(co)algebras over Hopf operad

Let \(P \) be a Hopf operad.

If \(A \) and \(B \) are \(P \)-algebras, their Hadamard product \(A \otimes B \) is defined by

\[(A \otimes B)_k := A_k \otimes B_k\]

it is again a \(P \)-algebra.

\[
P_k^k \otimes A_k \otimes B_k \rightarrow P_k^k \otimes P_k^k \otimes A_k \otimes B_k =
\]

\[
P_k^k \otimes A_k \otimes P_k^k \otimes B_k \rightarrow A_k^k \otimes B_k^k = (A \otimes B)^k
\]
(co)algebras over Hopf operad

Let P be a Hopf operad.

If A and B are P-algebras, their Hadamard product $A \otimes B$ is defined by

$$(A \otimes B)_k := A_k \otimes B_k$$

it is again a P-algebra.

$$P_k^k \otimes A_k \otimes B_k \longrightarrow P_k^k \otimes P_k^k \otimes A_k \otimes B_k =$$

$$P_k^k \otimes A_k \otimes P_k^k \otimes B_k \longrightarrow A^k \otimes B^k = (A \otimes B)^k$$

Similarly, if C and D are P-coalgebras, their Hadamard product $C \otimes D$ defined by

$$(C \otimes D)^k := C^k \otimes D^k$$

is again a P-coalgebra.
Part II - SWEEDLER THEORY
Sweedler theory

Let P be a colored operad in a symmetric monoidal closed locally presentable category V.

Let $\mathbf{P-Alg}$ and $\mathbf{P-Coalg}$ be the categories of P-algebras and of P-coalgebras.

Theorem (folklore)

1. $\mathbf{P-Alg}$ and $\mathbf{P-Coalg}$ are locally presentable.
2. There exists a monadic adjunction $U: \mathbf{P-Alg} \rightarrow V$.
3. There exists a comonadic adjunction $P^\vee: V \rightarrow \mathbf{P-Coalg}$.

P^\vee is not an analytic comonad (cooperad), hence difficult to describe explicitly.
Sweedler theory

Let P be a colored operad in a symmetric monoidal closed locally presentable category V.

Let P-Alg and P-Coalg be the categories of P-algebras and of P-coalgebras.

Theorem (folklore)

1. P-Alg and P-Coalg are locally presentable.
2. There exists a monadic adjunction

 $$U : \text{P-Alg} \leftrightarrow V^K : P.$$

3. There exists a comonadic adjunction

 $$P^\vee : V^K \leftrightarrow P$"Coalg : U.$$

P^\vee is not an analytic comonad (cooperad), hence difficult to describe explicitly.
Sweedler theory of a Hopf operad

Let P be a colored Hopf operad, there exists six functors

- Tensor product $\otimes : P\text{-Coalg} \times P\text{-Coalg} \to P\text{-Coalg}$
- Internal hom $\text{Hom} : P\text{-Coalg}^{\text{op}} \times P\text{-Coalg} \to P\text{-Coalg}$
- Sweedler hom $\{−, −\} : P\text{-Alg}^{\text{op}} \times P\text{-Alg} \to P\text{-Coalg}$
- Sweedler product $\triangleright : P\text{-Coalg} \times P\text{-Alg} \to P\text{-Alg}$
- Convolution $[−, −] : P\text{-Coalg}^{\text{op}} \times P\text{-Alg} \to P\text{-Alg}$
- Tensor product $\otimes : P\text{-Alg} \times P\text{-Alg} \to P\text{-Alg}$

such that

Theorem (A-J)

1. $(P\text{-Coalg}, \otimes, \text{Hom})$ is symmetric monoidal closed.
2. $(P\text{-Alg}, \{−, −\}, \triangleright, [−, −], \otimes)$ is enriched, tensored, cotensored and symmetric monoidal over Coalg.
Sweedler theory of the associative operad

For $P = \text{As}$ the associative operad, there exists six functors

- **tensor product** $\otimes : \text{Coalg} \times \text{Coalg} \to \text{Coalg}$
- **internal hom** $\text{HOM} : \text{Coalg}^{\text{op}} \times \text{Coalg} \to \text{Coalg}$
- **Sweedler hom** $\{-, -\} : \text{Alg}^{\text{op}} \times \text{Alg} \to \text{Coalg}$
- **Sweedler product** $\triangleright : \text{Coalg} \times \text{Alg} \to \text{Alg}$
- **convolution** $[-, -] : \text{Coalg}^{\text{op}} \times \text{Alg} \to \text{Alg}$
- **tensor product** $\otimes : \text{Alg} \times \text{Alg} \to \text{Alg}$

such that

Theorem

(Porst) $(\text{Coalg}, \otimes, \text{HOM})$ is symmetric monoidal closed.

(A-J) $(\text{Alg}, \{-, -\}, \triangleright, [-, -], \otimes)$ is enriched, tensored, cotensored and symmetric monoidal over Coalg.
Sweedler theory of the associative operad

If we choose $(V, \otimes) = (\text{Set}, \times)$, then $P-\text{Alg} = \text{Mon}$ and $P-\text{Coalg} = \text{Set}$. and the enrichment is trivial.
Sweedler theory of the associative operad

If we choose \((V, \otimes) = (\text{Set}, \times)\), then \(P\text{-Alg} = \text{Mon}\) and \(P\text{-Coalg} = \text{Set}\). and the enrichment is trivial.

If we choose \((V, \otimes) = (\text{Vect}, \otimes)\), then the enrichment is not trivial.
Sweedler theory of the associative operad

If we choose \((V, \otimes) = (\text{Set}, \times)\), then \(P\text{-Alg} = \text{Mon}\) and \(P\text{-Coalg} = \text{Set}\). and the enrichment is trivial.

If we choose \((V, \otimes) = (\text{Vect}, \otimes)\), then the enrichment is not trivial.

\(P^\vee = T^\vee\) is the cofree coalgebra functor (much bigger than the tensor coalgebra).

\(\text{Hom}\) and \(\{-, -\}\) do not have a simple presentation but

\[\text{Hom}(C, T^\vee(X)) = T^\vee([C, X])\]

\[\{T(X), A\} = T^\vee([X, A]).\]
An **atom** of a coalgebra C is an element e such that $\Delta(e) = e \otimes e$ and $\epsilon(e = 1)$

A **primitive element** u of C with respect to some atom e is an element e such that $\Delta(u) = u \otimes e + e \otimes u$

Proposition

- $\text{atom}(\text{Hom}(C, D)) = \text{hom}(C, D)$
- $\text{prim}_f(\text{Hom}(C, D)) = \text{Coder}_f(C, D)$
- $\text{atom}(\{A, B\}) = \text{hom}(A, B)$
- $\text{prim}_f(\{A, B\}) = \text{Der}_f(A, B)$
Sweedler theory of the associative operad

The operation $[-,-]$ is the convolution algebra.

If C is a coalgebra and A an algebra, $[C, A]$ is an algebra for the product

$$[C, A] \otimes [C, A] \xrightarrow{\text{can}} [C \otimes C, A \otimes A] \xrightarrow{[\Delta, m]} [C, A].$$
The operation \([-,-]\) is the convolution algebra.

If \(C\) is a coalgebra and \(A\) an algebra, \([C,A]\) is an algebra for the product

\[
[C,A] \otimes [C,A] \xrightarrow{\text{can}} [C \otimes C, A \otimes A] \xrightarrow{[\Delta,m]} [C, A].
\]

A map \(C \otimes A \to B\) in \(\mathbf{V}\) is called a measuring if the corresponding map \(A \to [C,B]\) is an algebra map.
Sweedler theory of the associative operad

\(\mu : C \otimes A \to B\) is a measuring iff the following diagram commutes

\[
\begin{array}{ccc}
C \otimes A \otimes A & \xrightarrow{\Delta_{C \otimes A^2}} & C \otimes C \otimes A \otimes A \\
& \downarrow C \otimes m_A & \sim \\
C \otimes A & \xrightarrow{\mu} & B
\end{array}
\]

In terms of elements, this gives the formula in \(B\)

\[
\mu(c, aa') = \sum \mu(c^{(1)}, a)\mu(c^{(2)}, a')
\]

(where \(\Delta(c) = \sum c^{(1)} \otimes c^{(2)}\))
Sweedler theory of the associative operad

The algebra $C \triangleright A$ can be defined as the quotient of $T(C \otimes A)$ given by coequalizing the two sides of

$$C \otimes A \otimes A \xrightarrow{\Delta_C \otimes A^2} C \otimes C \otimes A \otimes A \xrightarrow{\cong} C \otimes A \otimes C \otimes A$$

In particular we have

$$C \triangleright T(X) = T(C \otimes X).$$
Sweedler theory of the associative operad

Let C be a coalgebra and A, B be two algebras, we have bijection between the following sets

- **measurings** $C \otimes A \to B$
- **algebra maps** $A \to [C, B]$
- **algebra maps** $C \triangleright A \to B$
- **coalgebra maps** $C \to \{A, B\}$.
Sweedler theory of the associative operad

Let C be a coalgebra and A an algebra, we deduce three kinds of adjunctions

type I $\quad C \triangleright - : \text{Alg} \xleftrightarrow{\sim} \text{Alg} : [C, -]$

type II $\quad [-, A] : \text{Coalg} \xleftrightarrow{\sim} \text{Alg}^{op} : \{-, A\}$

type III $\quad - \triangleright A : \text{Coalg} \xleftrightarrow{\sim} \text{Alg} : \{A, -\}$
Sweedler theory of the associative operad

Type I adjunctions are quite frequent: if $V = \text{Vect}$

- E finite algebra, $E^* \triangleright -$ is left adjoint to $E \otimes -$,
Sweedler theory of the associative operad

Type I adjunctions are quite frequent: if $V = \text{Vect}$

- E finite algebra, $E^* \triangleright -$ is left adjoint to $E \otimes -$,

- $C = k \oplus k\delta$ with $\Delta(\delta) = \delta \otimes 1 + 1 \otimes \delta$

$[C, A] = A[\epsilon]$ and $C \triangleright A = T_A(\Omega_A)$,
Sweedler theory of the associative operad

Type I adjunctions are quite frequent: if \(V = \text{Vect} \)

- \(E \) finite algebra, \(E^* \rhd - \) is left adjoint to \(E \otimes - \),

- \(C = k \oplus k\delta \) with \(\Delta(\delta) = \delta \otimes 1 + 1 \otimes \delta \)
 \([C, A] = A[\epsilon] \) and \(C \rhd A = T_A(\Omega_A) \),

- \(C = T^c(x) \) (tensor coalgebra)
 \([C, A] = A[t] \) and \(C \rhd A = J(A) \) (jet ring of \(A \)).
Sweedler theory of the associative operad

Type I adjunctions are quite frequent: if $V = \text{Vect}$

- E finite algebra, $E^* \triangleright -$ is left adjoint to $E \otimes -$,

- $C = k \oplus k\delta$ with $\Delta(\delta) = \delta \otimes 1 + 1 \otimes \delta$

 $[C, A] = A[\epsilon]$ and $C \triangleright A = T_A(\Omega_A)$,

- $C = T^c(x)$ (tensor coalgebra)

Type II encompasses Sweedler duality: if $V = \text{Vect}$ and $A = k$, we have bijection between

algebra maps $B \rightarrow C^* = [C, k]$

and coalgebra maps $C \rightarrow B^\circ = \{B, k\}$.
Sweedler theory of the associative operad

Type I adjunctions are quite frequent: if $\mathbf{V} = \mathbf{Vect}$

E finite algebra, $E^* \triangleright -$ is left adjoint to $E \otimes -$,

$\triangleright C = k \oplus k\delta$ with $\Delta(\delta) = \delta \otimes 1 + 1 \otimes \delta$

$[C, A] = A[\epsilon]$ and $C \triangleright A = T_A(\Omega_A),$

$\triangleright C = T^c(x)$ (tensor coalgebra)

Type II encompasses Sweedler duality: if $\mathbf{V} = \mathbf{Vect}$ and $A = k$, we have bijection between

algebra maps $B \rightarrow C^* = [C, k]$

and coalgebra maps $C \rightarrow B^\circ = \{B, k\}$.

Type III encompasses the bar-cobar constructions (if $\mathbf{V} = \mathbf{dgVect}$).
Back to the general theory

The six Sweedler operations of a Hopf operad P:

\[
\begin{align*}
\otimes &: P\text{-Coalg} \times P\text{-Coalg} \to P\text{-Coalg} \\
\text{HOM} &: P\text{-Coalg}^{\text{op}} \times P\text{-Coalg} \to P\text{-Coalg} \\
\{-, -\} &: P\text{-Alg}^{\text{op}} \times P\text{-Alg} \to P\text{-Coalg} \\
\triangleright &: P\text{-Coalg} \times P\text{-Alg} \to P\text{-Alg} \\
[-, -] &: P\text{-Coalg}^{\text{op}} \times P\text{-Alg} \to P\text{-Alg} \\
\otimes &: P\text{-Alg} \times P\text{-Alg} \to P\text{-Alg}
\end{align*}
\]
The tensor products are computed termwise (Hadamard).

So is the convolution algebra: for C a P-coalgebra and A a P-algebra, we have

$$[C, A]_k = [C^k, A_k].$$

This is a P-algebra for the product

$$P^k_k \otimes [C, A]_k \longrightarrow P^k_k \otimes P^k_k \otimes [C^k, A_k] \longrightarrow [C^k, C^k] \otimes [C^k, P^k_k \otimes A_k] \longrightarrow [C^k, A_k]$$

A map $C \otimes A \to B$ in \mathbf{V}^K is called a measuring if the corresponding map $A \to [C, B]$ is a P-algebra map.
Back to the general theory

For associative algebras $\mu : C \otimes A \to B$ is a measuring iff the following diagram commutes:

\[
\begin{array}{c}
\Delta_{C \otimes A^2} \\
\downarrow C \otimes m_A \\
C \otimes A
\end{array} \quad \overset{\sim}{\longrightarrow} \quad \begin{array}{c}
\mu \otimes \mu \\
B \otimes B
\end{array}
\]
Back to the general theory

\(\mu : C \otimes A \to B \) is a measuring iff the following diagram commutes.

\[
\begin{array}{ccc}
P^k \otimes C^k \otimes A_k & \xrightarrow{\Delta_P} & P^k \otimes P^k \otimes C^k \otimes A_k \\
\downarrow m_A & & \downarrow \Delta_C \\
C^k \otimes P^k \otimes A_k & \cong & P^k \otimes C^k \otimes P^k \otimes A_k \\
\downarrow & & \downarrow \\
P^k \otimes C^k \otimes A_k & \xrightarrow{\mu \otimes n} & P^k \otimes B^k \\
\downarrow m_B & & \downarrow \\
C^k \otimes A_k & \xrightarrow{\mu} & B_k
\end{array}
\]
Back to the general theory

The P-algebra $C \triangleright A$ can be defined as the quotient of $P(C \otimes A)$ given by coequalizing the two sides of

$$
\begin{align*}
P_k^k \otimes C_k \otimes A_k & \longrightarrow P_k^k \otimes P_k^k \otimes C_k \otimes A_k \\
\cong & \longrightarrow P_k^k \otimes C_k \otimes P_k^k \otimes A_k \\
\downarrow & \\
C_k^k \otimes P_k^k \otimes A_k & \cong \\
\downarrow & \\
P_k^k \otimes C_k \otimes A_k & \cong \\
\downarrow & \\
P_k^k \otimes P(C \otimes A)_k & \\
\downarrow & \\
P(C \otimes A)_k.
\end{align*}
$$
Sweedler theory of a category K

For $P = K$ a category with set of objects K, we have

$$P\text{-Alg} = [K, V] \quad \text{and} \quad P\text{-Coalg} = [K^{op}, V].$$

There exists six functors

$\otimes : [K^{op}, V] \times [K^{op}, V] \to [K^{op}, V]$

$\text{Hom} : [K^{op}, V]^{op} \times [K^{op}, V] \to [K^{op}, V]$

$\{−, −\} : [K, V]^{op} \times [K, V] \to [K^{op}, V]$

$\rhd : [K^{op}, V] \times [K, V] \to [K, V]$

$[-, -] : [K^{op}, V]^{op} \times [K, V] \to [K, V]$

$\otimes : [K, V] \times [K, V] \to [K, V]$

By symmetry between K and K^{op} we have

Theorem (?)

1. $[K, V]$ and $[K^{op}, V]$ are symmetric monoidal closed
2. and are enriched, tensored and cotensored over each other.
Sweedler theory of a category \mathbf{K}

For $A, B : \mathbf{K} \to \mathbf{V}$ and $C, D : \mathbf{K}^{op} \to \mathbf{V}$ we have:

\[
(C \otimes D)^k = C^k \otimes D^k
\]

\[
\text{Hom}(C, D)^k = \int_{k' \in k/(\mathbf{K}^{op})} [C^{k'}, D^{k'}]
\]

\[
\{A, B\}^k = \int_{k' \in \mathbf{K}/k} [A_{k'}, B_{k'}]
\]

\[
(C \triangleright A)_k = \int_{k' \in \mathbf{K}/k} C^{k'} \otimes A_{k'}
\]

\[
[C, A]_k = [C^k, A_k]
\]

\[
(A \otimes B)_k = A_k \otimes B_k
\]
Sweedler theory of left and right modules over B

Let $P = B$ a cocommutative bialgebra, we have

$$P\text{-Alg} = B\text{-Mod} \quad \text{and} \quad P\text{-Coalg} = \text{Mod-B}.$$

There exists six functors

\begin{align*}
\otimes & : \text{Mod-B} \times \text{Mod-B} \to \text{Mod-B} \\
\text{HOM} & : (\text{Mod-B})^{op} \times \text{Mod-B} \to \text{Mod-B} \\
\{-, -\} & : B\text{-Mod}^{op} \times B\text{-Mod} \to \text{Mod-B} \\
\triangleright & : \text{Mod-B} \times B\text{-Mod} \to B\text{-Mod} \\
[\,-, -\,] & : (\text{Mod-B})^{op} \times B\text{-Mod} \to B\text{-Mod} \\
\otimes & : B\text{-Mod} \times B\text{-Mod} \to B\text{-Mod}
\end{align*}

such that

Theorem

1. $(\text{Mod-B}, \otimes, \text{HOM})$ is symmetric monoidal closed.
2. $(B\text{-Mod}, \{-, -\}, \triangleright, [\,-, -\,], \otimes)$ is enriched, tensored, cotensored and symmetric monoidal over Mod-B.
Sweedler theory of left and right modules over B

For M, N two left B-modules and Q, R two right B-modules

$$\text{Hom}(Q, R) = \int_{(B/\ast)^{\text{op}}} [Q, R]$$

$$\{M, N\} = \int_{B/\ast} [M, N]$$

$$(Q \triangleright M) = \int_{B/\ast} Q \otimes M$$

$$[Q, M] = [Q, M]$$

where B/\ast is the division category of the ring B

- objects $=$ elements of B
- arrows $a \rightarrow b = \text{elements } c \text{ s.t. } a = bc$
Sweedler theory of operads

For $P = OP(K)$ the operad of K-colored operads, there exists six functors

\begin{align*}
\otimes & : \text{coOp}(K) \times \text{coOp}(K) \to \text{coOp}(K) \\
\text{Hom} & : \text{coOp}(K)^{\text{op}} \times \text{coOp}(K) \to \text{coOp}(K) \\
\{-, -\} & : \text{Op}(K)^{\text{op}} \times \text{coOp}(K) \to \text{coOp}(K) \\
\triangleright & : \text{coOp}(K) \times \text{Op}(K) \to \text{Op}(K) \\
[-, -] & : \text{coOp}(K)^{\text{op}} \times \text{Op}(K) \to \text{Op}(K) \\
\otimes & : \text{Op}(K) \times \text{Op}(K) \to \text{Op}(K)
\end{align*}

such that

Theorem (A-J)

1. $(\text{coOp}(K), \otimes, \text{Hom})$ is symmetric monoidal closed.
2. $(\text{Op}(K), \{-, -\}, \triangleright, [-, -], \otimes)$ is enriched, tensored, cotensored and symmetric monoidal over $\text{coOp}(K)$.
Sweedler theory of operads

The monoidal structures are the Hadamard tensor products.

If C is a cooperad and A an operad, $[C, A]$ is the convolution operad of Berger-Moerdijk.

We have formulas

\[
\text{HOM}(C, \text{OP}^\vee(X)) = \text{OP}^\vee([C, X])
\]
\[
\{\text{OP}(X), A\} = \text{OP}^\vee([X, A])
\]
\[
C \triangleright \text{OP}(X) = \text{OP}(C \otimes X)
\]
Part III - MAURER-CARTAN THEORY
Maurer-Cartan theory of algebras

Let \(V = \text{dgVect} \) (= chain complexes),
then \(\text{Alg} = \text{dgAlg} \) and \(\text{Coalg} = \text{dgCoalg} \).
Maurer-Cartan theory of algebras

Let $V = \text{dgVect}$ (chain complexes), then $\text{Alg} = \text{dgAlg}$ and $\text{Coalg} = \text{dgCoalg}$.

For A a dg-algebra, an element $a \in A_{-1}$ is said to be Maurer-Cartan if it satisfies the equation

$$da + a^2 = 0.$$
Maurer-Cartan theory of algebras

Let $\mathbf{V} = \text{dgVect}$ (= chain complexes), then $\text{Alg} = \text{dgAlg}$ and $\text{Coalg} = \text{dgCoalg}$.

For A a dg-algebra, an element $a \in A_{-1}$ is said to be Maurer-Cartan if it satisfies the equation

$$da + a^2 = 0.$$

Let MC be the dg-algebra generated by a universal Maurer-Cartan element:

$$\text{MC} = k[u]$$

with $|u| = -1$ and $du = -u^2$.

Maurer-Cartan elements of A are in bijection with algebra maps $\text{MC} \to A$.
Maurer-Cartan theory of algebras

Let C be a dg-coalgebra and A be a dg-algebra.

A twisting cochain from C to A is defined to be a Maurer-Cartan element of the convolution algebra $[C, A]$.

Let $Tw(C, A)$ be the set of twisting cochains from C to A. It is in bijection with the set of algebra maps $\text{MC} \rightarrow [C, A]$.
Maurer-Cartan theory of algebras

The bar construction \(B : \text{dgAlg} \to \text{dgCoalg} \) and the coobar construction \(\Omega : \text{dgCoalg} \to \text{dgAlg} \) are defined to be the functors representing

\[
\text{dgCoalg}^{\text{op}} \times \text{dgAlg} \to \text{Set}
\]

\[
(C, A) \mapsto Tw(C, A)
\]

In other words \(B \) and \(\Omega \) are such that there exists natural bijections between

- twisting cochains \(C \to A \)
- algebra maps \(\Omega C \to A \)
- coalgebra maps \(C \to BA \).
Maurer-Cartan theory of algebras

A twisting cochain is an algebra map \(MC \to [C, A] \).

Using Sweedler operations, we have bijection between the following sets

- algebra maps \(MC \to [C, A] \)
- algebra maps \(C \triangleright MC \to A \)
- coalgebra maps \(C \to \{MC, A\} \).

We deduce that the adjunction of type III

\[
\begin{array}{ccc}
- & \triangleright MC : dgCoalg & \xrightarrow{-} \xleftarrow{\cdot} \xrightarrow{-} dgAlg & : \{MC, -\}
\end{array}
\]

is the bar-cobar adjunction

\[
\Omega : dgCoalg \xleftarrow{-} dgAlg : B
\]

(up to a subtlety about conilpotent coalgebras).
Maurer-Cartan theory of algebras

Recall that $MC = T(u)$ is free as a graded algebra. The formulas

\[
\begin{align*}
\{ T(X), A \} &= T^\vee([X, A]) \\
C \triangleright T(X) &= T(C \otimes X)
\end{align*}
\]

gives the classical construction of the bar and cobar functors

\[
\begin{align*}
BA = \{ MC, A \} &= T^\vee(u^* \otimes A) \\
\Omega C = C \triangleright MC &= T(C \otimes u)
\end{align*}
\]

The internal and external part of the differentials come respectively from the differential of A (or C) and of MC.
Operadic Maurer-Cartan theory

Let P be an operad (with one color), the invariant space is

$$Inv(P) = \prod_n P[n]^{\Sigma_n}$$

is a pre-Lie algebra.

A Maurer-Cartan element of P is a Maurer-Cartan element in this pré-Lie algebra.

It is a family of elements $u_n \in P(n)_{-1}$ such that

$$du_n = \sum u_k \circ_i u_{n-k+1}$$
Let MC be the graded operad freely generated by u_n in arity n and degree -1 with differential generated by

$$du_n = \sum u_k \circ_i u_{n-k+1}$$

An operad map $MC \to P$ is the same thing as a Maurer-Cartan element of P.

We called MC the **Maurer-Cartan operad**.
Operadic Maurer-Cartan theory

An operadic twisting cochain $C \to A$ is a Maurer-Cartan element in the convolution operad $[C, A]$.

The operadic bar and cobar constructions are defined to represent the functor

$$\mathbf{dgCoop}^{op} \times \mathbf{dgOp} \longrightarrow \mathbf{Set}$$

$$(C, A) \longmapsto \text{Tw}(C, A)$$

The Sweedler theory of operads gives us bijections between

- operadic twisting cochains $C \to A$
- operad maps $\Omega C = C \rhd MC \to A$
- cooperads maps $C \to BA = \{MC, A\}$.
Operadic Maurer-Cartan theory

Recall that $MC = OP(u)$ is free as a graded operad. The formulas

\[
\begin{align*}
\{ OP(X), A \} &= OP^\vee([X, A]) \\
C \triangleright OP(X) &= OP(C \otimes X)
\end{align*}
\]

gives the classical construction of the bar and cobar functors

\[
\begin{align*}
BA &= \{ MC, A \} = OP^\vee(u^* \otimes A) \\
\Omega C &= C \triangleright MC = OP(C \otimes u)
\end{align*}
\]

The internal and external part of the differentials come respectively from the differential of A (or C) and of MC.
What is MC?
Operadic Maurer-Cartan theory

What is MC?

In the symmetric operadic case, an MC algebra structure on X is the same thing as a curved L_∞-algebra structure on $s^{-1}X$.

(In the non-symmetric operadic case, an MC algebra structure on X is the same thing as a curved A_∞-algebra structure on $s^{-1}X$.)

Hence, the curved L_∞ (or A_∞) operads governs the bar and cobar constructions through the Sweedler operation. With a slight abuse of notation:

$$BA = \{cL_\infty, A\} \quad \text{and} \quad \Omega C = C \triangleright cL_\infty.$$
Develop the formalism of Maurer-Cartan for general colored operads.

Apply it to recover all known bar-cobar constructions, including the bar-cobar construction for (co)algebras relative to an operadic twisting cochain.

Understand Koszul complexes and Koszul duality.
Develop the formalism of Maurer-Cartan for general colored operads.

Apply it to recover all known bar-cobar constructions, including the bar-cobar construction for (co)algebras relative to an operadic twisting cochain.

Understand Koszul complexes and Koszul duality.

Thank you.